dc.contributor.author | Akgüller, Ömer | |
dc.date.accessioned | 2020-11-20T14:50:54Z | |
dc.date.available | 2020-11-20T14:50:54Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0973-1377 | |
dc.identifier.issn | 0973-7545 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/1644 | |
dc.description | WOS: 000438888700006 | en_US |
dc.description.abstract | We derive the Poisson manifolds emerging from the Hamiltonian systems defined on measure chains in the context of symmetric calculus of variations which encompass the discrete and continuous case. Precisely, we give a theorem characterizing Hamiltonian vector fields on a manifold on measure chains. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Centre Environment Social & Economic Research Publ-Ceser | en_US |
dc.item-rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Symmetric Derivatives | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Poisson Bracket | en_US |
dc.subject | Measure Chains | en_US |
dc.title | Poisson Bracket on Measure Chains and Emerging Poisson Manifold | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Fen Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Akgüller, Ömer | |
dc.identifier.volume | 57 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 56 | en_US |
dc.identifier.endpage | 64 | en_US |
dc.relation.journal | International Journal of Applied Mathematics & Statistics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |