Basit öğe kaydını göster

dc.contributor.authorDinçer, Nevin Güler
dc.contributor.authorAkkuş, Özge
dc.date.accessioned2020-11-20T14:51:20Z
dc.date.available2020-11-20T14:51:20Z
dc.date.issued2018
dc.identifier.issn1574-9541
dc.identifier.issn1878-0512
dc.identifier.urihttps://doi.org/10.1016/j.ecoinf.2017.12.001
dc.identifier.urihttps://hdl.handle.net/20.500.12809/1727
dc.descriptionWOS: 000424721000014en_US
dc.description.abstractIn this study, a new Fuzzy Time Series (FTS) model based on the Fuzzy K-Medoid (FKM) clustering algorithm is proposed in order to forecast air pollution. FTS models generally have some advantages when compared with other techniques used in forecasting of air pollution as they do not require any statistical assumptions on time series data; and they provide successful forecasting results even in situations where the number of observations is small and where data sets include uncertainty, still allowing for generalization. But existing FTS models based on fuzzy clustering fail in modeling of data sets that include outliers such as air pollution data. The potential superiority of the proposed model is to be a robust technique for outliers and abnormal observations. In order to show the performance of the proposed method in forecasting of air pollution, a time series consisting of SO2 concentrations measured in 65 monitoring stations in Turkey are used. According to the results of analyses, it is observed that the proposed method provides successful forecasting results especially in time series which include numerous outliers.en_US
dc.item-language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectTime Series Analysisen_US
dc.subjectClustering Analysisen_US
dc.subjectFuzzy K-Medoid Clusteringen_US
dc.subjectForecastingen_US
dc.subjectAir Pollutionen_US
dc.titleA new fuzzy time series model based on robust clustering for forecasting of air pollutionen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorDinçer, Nevin Güler
dc.contributor.institutionauthorAkkuş, Özge
dc.identifier.doi10.1016/j.ecoinf.2017.12.001
dc.identifier.volume43en_US
dc.identifier.startpage157en_US
dc.identifier.endpage164en_US
dc.relation.journalEcological Informaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster