dc.contributor.author | Sağbaş, Ensar Arif | |
dc.contributor.author | Peker, Musa | |
dc.contributor.author | Ballı, Serkan | |
dc.date.accessioned | 2020-11-20T14:53:58Z | |
dc.date.available | 2020-11-20T14:53:58Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-1-5386-1880-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/2088 | |
dc.description | 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) - SEP 16-17, 2017 - Malatya, TURKEY | en_US |
dc.description | 0000-0002-4825-139X; | en_US |
dc.description | WOS: 000426868700180 | en_US |
dc.description.abstract | The aim of this study is to detect transportation modes by using smart phone sensor data. The data are obtained from the GPS, accelerometer and gyroscope sensors of the smartphone. The collected data is divided into 10 second windows and each pattern contains 200 patterns. After the attributes have been determined, the manifold learning algorithm is applied to data set. The obtain features are classified by the Support Vector Machine (SVM) method. In experimental study stage, the performances of three kernel functions of the SVM were compared. | en_US |
dc.description.sponsorship | IEEE Turkey Sect, Anatolian Sci | en_US |
dc.item-language.iso | tur | en_US |
dc.publisher | Ieee | en_US |
dc.item-rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Smartphone | en_US |
dc.subject | Transportation Mode Classification | en_US |
dc.subject | Manifold Learning | en_US |
dc.subject | Support Vector Machines | en_US |
dc.title | A novel approach for transportation mode detection: Combining t-SNE Manifold Learning and Support Vector Machines | en_US |
dc.item-title.alternative | Ulaşim türü tespiti için yeni bir yaklaşim: T-SNE manifold öğrenme ve destek vektör makinesi'nin kombine edilmesi | |
dc.item-type | conferenceObject | en_US |
dc.contributor.department | MÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Ballı, Serkan | |
dc.relation.journal | 2017 International Artificial Intelligence and Data Processing Symposium (Idap) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |