Basit öğe kaydını göster

dc.contributor.authorSahmaran, M.
dc.contributor.authorYıldırım, G.
dc.contributor.authorAras, G. Hasıloğlu
dc.contributor.authorKeskin, Süleyman Bahadır
dc.contributor.authorKasap Keskin, Özlem
dc.contributor.authorLachemi, M.
dc.date.accessioned2020-11-20T14:54:59Z
dc.date.available2020-11-20T14:54:59Z
dc.date.issued2017
dc.identifier.issn0889-325X
dc.identifier.issn1944-737X
dc.identifier.urihttps://doi.org/10.14359/51689484
dc.identifier.urihttps://hdl.handle.net/20.500.12809/2195
dc.descriptionWOS: 000398097300010en_US
dc.description.abstractExisting concrete structures worldwide are suffering from deterioration/distress. With ever-growing urban population and global warming, higher CO2 concentrations in the atmosphere are likely to further weaken the chemical stability of concrete material, and it is very important to understand how its effects will impair the material. To help moderate the harmful effects of increased CO2 concentrations, an experimental study was undertaken in which efforts were made to accelerate the capability of engineered cementitious composites (ECCs) with different pozzolanic materials (PMs) to self-heal its own damage (for example, cracks) in a CO2-rich environment. Self-healing was assessed by electrical impedance (EI) and rapid chloride permeability tests (RCPTs) on 28-day-old specimens. Experimental findings show that self-healing in a CO2-rich environment is more pronounced than it is in normal atmospheric conditions. The findings also show that PM type can be very decisive on self-healing performance in a CO2-rich environment, depending on testing method. Results suggest that proper material design can lead to the development of environmentally friendly ECC options with superior mechanical and durability characteristics.en_US
dc.description.sponsorshipScientific and Technical Research Council (TUBITAK) of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [MAG-112M876]; Turkish Academy of Sciences, Young Scientist Award programTurkish Academy of Sciencesen_US
dc.description.sponsorshipThe authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council (TUBITAK) of Turkey provided under Project: MAG-112M876 and the Turkish Academy of Sciences, Young Scientist Award program.en_US
dc.item-language.isoengen_US
dc.publisherAmer Concrete Insten_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCarbonationen_US
dc.subjectCO2-Rich Environmenten_US
dc.subjectElectrical Propertiesen_US
dc.subjectEngineered Cementitious Composites (Eccs)en_US
dc.subjectSelf-Healingen_US
dc.titleSelf-Healing of Cementitious Composites to Reduce High CO2 Emissionsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.institutionauthorKeskin, Süleyman Bahadır
dc.contributor.institutionauthorKasap Keskin, Özlem
dc.identifier.doi10.14359/51689484
dc.identifier.volume114en_US
dc.identifier.issue1en_US
dc.identifier.startpage93en_US
dc.identifier.endpage104en_US
dc.relation.journalAci Materials Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster