Basit öğe kaydını göster

dc.contributor.authorGüler, Nevin
dc.contributor.authorİşçi, Öznur Güneri
dc.date.accessioned2020-11-20T15:01:58Z
dc.date.available2020-11-20T15:01:58Z
dc.date.issued2016
dc.identifier.issn0169-8095
dc.identifier.issn1873-2895
dc.identifier.urihttps://doi.org/10.1016/j.atmosres.2016.05.018
dc.identifier.urihttps://hdl.handle.net/20.500.12809/2323
dc.descriptionWOS: 000379105600005en_US
dc.description.abstractThis study is aimed to predict a regional model for weekly PM10 concentrations measured air pollution monitoring stations in Turkey. There are seven geographical regions in Turkey and numerous monitoring stations at each region. Predicting a model conventionally for each monitoring station requires a lot of labor and time and it may lead to degradation in quality of prediction when the number of measurements obtained from any omonitoring station is small. Besides, prediction models obtained by this way only reflect the air pollutant behavior of a small area. This study uses Fuzzy C-Auto Regressive Model (FCARM) in order to find a prediction model to be reflected the regional behavior of weekly PM10 concentrations. The superiority of FCARM is to have the ability of considering simultaneously PM10 concentrations measured monitoring stations in the specified region. Besides, it also works even if the number of measurements obtained from the monitoring stations is different or small. In order to evaluate the performance of FCARM, FCARM is executed for all regions in Turkey and prediction results are compared to statistical Autoregressive (AR) Models predicted for each station separately. According to Mean Absolute Percentage Error (MAPE) criteria, it is observed that FCARM provides the better predictions with a less number of models. (C) 2016 Elsevier B.V. All rights reserved.en_US
dc.item-language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThe Regional Prediction Modelen_US
dc.subjectFuzzy C-Auto Regressive Modelen_US
dc.subjectFuzzy Clusteringen_US
dc.subjectAuto Regressive Modelen_US
dc.subjectAir Pollutantsen_US
dc.titleThe regional prediction model of PM10 concentrations for Turkeyen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorGüler, Nevin
dc.contributor.institutionauthorİşçi, Öznur Güneri
dc.identifier.doi10.1016/j.atmosres.2016.05.018
dc.identifier.volume180en_US
dc.identifier.startpage64en_US
dc.identifier.endpage77en_US
dc.relation.journalAtmospheric Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster