Basit öğe kaydını göster

dc.contributor.authorBaşkonuş, Hacı Mehmet
dc.contributor.authorKoç, Dilara Altan
dc.contributor.authorBulut, Hasan
dc.date.accessioned2020-11-20T15:03:23Z
dc.date.available2020-11-20T15:03:23Z
dc.date.issued2016
dc.identifier.issn0030-4026
dc.identifier.urihttps://doi.org/10.1016/j.ijleo.2016.05.132
dc.identifier.urihttps://hdl.handle.net/20.500.12809/2715
dc.descriptionWOS: 000380417900080en_US
dc.description.abstractObtaining new and important travelling wave solutions of wave propagation modelling of waves such as nonlinear optics models, propagation and transmission models of waves by using different methods plays an important role in maritime engineering, ocean, beach science and floating structures, and also for understanding new physical meanings of coastal structural properties. New complex travelling wave solutions obtained by using different newly improved methods explain new and general properties of nonlinear optic structures, wave propagations and motions, major structures of the impact of environmental factors on the beach like tsunami, the impact of the waves on the vessel, the power of the effects of the waves on wave distribution panels. These solutions structures may be trigonometric, complex function, hyperbolic function, exponential and rational function. In this study, we apply two effective methods to the nonlinear evolution equation used to describe the new versions of different mathematical models for wave motion and propagations. The first is improved Bernoulli sub-equation function method (IBSEFM), the latter is modified exp (-Omega (xi))-expansion function method (MEFM). We obtain some new travelling wave structures such as complex function, hyperbolic function and rational function, exponential function solutions. We observe that all travelling wave solutions have been verified the nonlinear partial differential equation by using Wolfram Mathematica 9. Then, we plot the two and three dimensional surfaces for all travelling wave structures obtained in this paper by the same computer program. (C) 2016 Elsevier GmbH. All rights reserved.en_US
dc.item-language.isoengen_US
dc.publisherElsevier Gmbhen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThe Improved Bernoulli Sub-Equation Function Methoden_US
dc.subjectModified Exp (-Omega(Xi))-Expansion Function Methoden_US
dc.subjectThe Nonlinear Evolution Equationen_US
dc.subjectComplex Function Solutionen_US
dc.subjectHyperbolic Function Solutionen_US
dc.titleDark and new travelling wave solutions to the nonlinear evolution equationen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorKoç, Dilara Altan
dc.identifier.doi10.1016/j.ijleo.2016.05.132
dc.identifier.volume127en_US
dc.identifier.issue19en_US
dc.identifier.startpage8043en_US
dc.identifier.endpage8055en_US
dc.relation.journalOptiken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster