Basit öğe kaydını göster

dc.contributor.authorGürüler, Hüseyin
dc.contributor.authorPeker, Musa
dc.contributor.authorBaysal, Ömür
dc.date.accessioned2020-11-20T15:04:51Z
dc.date.available2020-11-20T15:04:51Z
dc.date.issued2015
dc.identifier.issn0717-3458
dc.identifier.urihttps://doi.org/10.1016/j.ejbt.2015.06.006
dc.identifier.urihttps://hdl.handle.net/20.500.12809/2938
dc.descriptionWOS: 000363411600004en_US
dc.description.abstractBackground: Identifying and validating biomarkers' scores of polymorphic bands are important for studies related to the molecular diversity of pathogens. Although these validations provide more relevant results, the experiments are very complex and time-consuming. Besides rapid identification of plant pathogens causing disease, assessing genetic diversity and pathotype formation using automated soft computing methods are advantageous in terms of following genetic variation of pathogens on plants. In the present study, artificial neural network (ANN) as a soft computing method was applied to classify plant pathogen types and fungicide susceptibilities using the presence/absence of certain sequence markers as predictive features. Results: A plant pathogen, causing downy mildewdisease on cucurbits was considered as a model microorganism. Significant accuracy was achieved with particle swarm optimization (PSO) trained ANNs. Conclusions: This pioneer study for estimation of pathogen properties using molecular markers demonstrates that neural networks achieve good performance for the proposed application. (C) 2015 Pontificia Universidad Catolica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.en_US
dc.item-language.isoengen_US
dc.publisherUniv Catolica de Valparaisoen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputational Biologyen_US
dc.subjectGenetic Diversityen_US
dc.subjectMolecular Markersen_US
dc.subjectPlant Pathogensen_US
dc.subjectPredictive Informationen_US
dc.subjectSoft Computingen_US
dc.titleSoft computing model on genetic diversity and pathotype differentiation of pathogens: A novel approachen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-1855-1882
dc.contributor.authorID0000-0001-5104-0983
dc.contributor.authorID0000-0002-6495-9187
dc.contributor.institutionauthorGürüler, Hüseyin
dc.contributor.institutionauthorPeker, Musa
dc.contributor.institutionauthorBaysal, Ömür
dc.identifier.doi10.1016/j.ejbt.2015.06.006
dc.identifier.volume18en_US
dc.identifier.issue5en_US
dc.identifier.startpage347en_US
dc.identifier.endpage354en_US
dc.relation.journalElectronic Journal of Biotechnologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster