Basit öğe kaydını göster

dc.contributor.authorCoşkun, Mustafa
dc.contributor.authorGürüler, Hüseyin
dc.contributor.authorİstanbullu, Ayhan
dc.contributor.authorPeker, Musa
dc.date.accessioned2020-11-20T16:17:38Z
dc.date.available2020-11-20T16:17:38Z
dc.date.issued2015
dc.identifier.issn0148-5598
dc.identifier.issn1573-689X
dc.identifier.urihttps://doi.org/10.1007/s10916-014-0173-3
dc.identifier.urihttps://hdl.handle.net/20.500.12809/3287
dc.description0000-0003-1855-1882en_US
dc.descriptionWOS: 000346660300021en_US
dc.descriptionPubMed ID: 25472730en_US
dc.description.abstractThe spectrum of EEG has been studied to predict the depth of anesthesia using variety of signal processing methods up to date. Those standard models have used the full spectrum of EEG signals together with the systolic-diastolic pressure and pulse values. As it is generally agreed today that the brain is in stable state and the delta-theta bands of the EEG spectrum remain active during anesthesia. Considering this background, two questions that motivates this paper. First, determining the amount of gas to be administered is whether feasable from the spectrum of EEG during the maintenance stage of surgical operations. Second, more specifically, the delta-theta bands of the EEG spectrum are whether sufficient alone for this aim. This research aims to answer these two questions together. Discrete wavelet transformation (DWT) and empirical mode decomposition (EMD) were applied to the EEG signals to extract delta-theta bands. The power density spectrum (PSD) values of target bands were presented as inputs to multi-layer perceptron (MLP) neural network (NN), which predicted the gas level. The present study has practical implications in terms of using less data, in an effective way and also saves time as well.en_US
dc.item-language.isoengen_US
dc.publisherSpringeren_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnesthesiaen_US
dc.subjectEstimating Anesthetic Gas Levelen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectDiscrete Wavelet Transformen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.titleDetermining the Appropriate Amount of Anesthetic Gas Using DWT and EMD Combined with Neural Networken_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümüen_US
dc.contributor.institutionauthorGürüler, Hüseyin
dc.identifier.doi10.1007/s10916-014-0173-3
dc.identifier.volume39en_US
dc.identifier.issue1en_US
dc.relation.journalJournal of Medical Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster