dc.contributor.author | Akçetin, Eyüp | |
dc.contributor.author | Koca, İlknur | |
dc.contributor.author | Kılıç, Muhammet Burak | |
dc.date.accessioned | 2020-11-20T14:30:07Z | |
dc.date.available | 2020-11-20T14:30:07Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0749-159X | |
dc.identifier.issn | 1098-2426 | |
dc.identifier.uri | https://doi.org/10.1002/num.22525 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/364 | |
dc.description | WOS: 000561871900001 | en_US |
dc.description.abstract | In this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana-Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.item-rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fractional Order Differentiation | en_US |
dc.subject | Schrodinger Equation | en_US |
dc.subject | Numerical Scheme | en_US |
dc.title | New analysis and application of fractional order Schrodinger equation using with Atangana-Batogna numerical scheme | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Muğla Meslek Yüksekokulu, Yönetim Ve Organizasyon Bölümü | en_US |
dc.contributor.institutionauthor | Akçetin, Eyüp | |
dc.identifier.doi | 10.1002/num.22525 | |
dc.relation.journal | Numerical Methods For Partial Differential Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |