Basit öğe kaydını göster

dc.contributor.authorAkçetin, Eyüp
dc.contributor.authorKoca, İlknur
dc.contributor.authorKılıç, Muhammet Burak
dc.date.accessioned2020-11-20T14:30:07Z
dc.date.available2020-11-20T14:30:07Z
dc.date.issued2020
dc.identifier.issn0749-159X
dc.identifier.issn1098-2426
dc.identifier.urihttps://doi.org/10.1002/num.22525
dc.identifier.urihttps://hdl.handle.net/20.500.12809/364
dc.descriptionWOS: 000561871900001en_US
dc.description.abstractIn this work, an analytical approximation to the solution of Schrodinger equation has been provided. The fractional derivative used in this equation is the Caputo derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on the power law. While solving the fractional order Schrodinger equation, Atangana-Batogna numerical method is presented for fractional order equation. We obtain an efficient recurrence relation for solving these kinds of equations. To illustrate the usefulness of the numerical scheme, the numerical simulations are presented. The results show that the numerical scheme is very effective and simple.en_US
dc.item-language.isoengen_US
dc.publisherWileyen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional Order Differentiationen_US
dc.subjectSchrodinger Equationen_US
dc.subjectNumerical Schemeen_US
dc.titleNew analysis and application of fractional order Schrodinger equation using with Atangana-Batogna numerical schemeen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Muğla Meslek Yüksekokulu, Yönetim Ve Organizasyon Bölümüen_US
dc.contributor.institutionauthorAkçetin, Eyüp
dc.identifier.doi10.1002/num.22525
dc.relation.journalNumerical Methods For Partial Differential Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster