Basit öğe kaydını göster

dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T14:30:07Z
dc.date.available2020-11-20T14:30:07Z
dc.date.issued2020
dc.identifier.issn0163-0563
dc.identifier.issn1532-2467
dc.identifier.urihttps://doi.org/10.1080/01630563.2020.1794891
dc.identifier.urihttps://hdl.handle.net/20.500.12809/365
dc.descriptionWOS: 000560864700001en_US
dc.description.abstractIn this paper, we propose a Pade-type approximation based on truncated total least squares (P - TTLS) and compare it with three commonly used smoothing methods: Penalized spline, Kernel smoothing and smoothing spline methods that have become very powerful smoothing techniques in the non-parametric regression setting. We consider the nonparametric regression model, y(i) = g(x(i)) + epsilon(i), and discuss how to estimate smooth regression function g where we are unsure of the underlying functional form of g. The Pade approximation provides a linear model with multi-collinearities and errors in all its variables. The P - TTLS method is primarily designed to address these issues, especially for solving error-contaminated systems and ill-conditioned problems. To demonstrate the ability of the method, we conduct Monte Carlo simulations under different conditions and employ a real data example. The outcomes of the experiments show that the fitted curve solved by P - TTLS is superior to and more stable than the benchmarked penalized spline (B - PS), Kernel smoothing (KS) and smoothing spline (SS) techniques.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlternative Smoothing Methoden_US
dc.subjectNonparametric Regressionen_US
dc.subjectPade Approximationen_US
dc.subjectSplinesen_US
dc.subjectTruncated Total Least Squaresen_US
dc.titleEstimating the Nonparametric Regression Function by Using Pade Approximation Based on Total Least Squaresen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1080/01630563.2020.1794891
dc.relation.journalNumerical Functional Analysis and Optimizationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster