Basit öğe kaydını göster

dc.contributor.authorGöktaş, Atila
dc.contributor.authorAkkuş, Özge
dc.contributor.authorKuvat, Aykut
dc.date.accessioned2020-11-20T14:30:09Z
dc.date.available2020-11-20T14:30:09Z
dc.date.issued2020
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.urihttps://doi.org/10.1080/02664763.2020.1803814
dc.identifier.urihttps://hdl.handle.net/20.500.12809/375
dc.descriptionWOS: 000556484300001en_US
dc.description.abstractA large and wide variety of ridge parameter estimators proposed for linear regression models exist in the literature. Actually proposing new ridge parameter estimator lately proving its efficiency on few cases seems endless. However, so far there is no ridge parameter estimator that can serve best for any sample size or any degree of collinearity among regressors. In this study we propose a new robust ridge parameter estimator that serves best for any case assuring that is free of sample size, number of regressors and degree of collinearity. This is in fact realized by choosing three best from enormous number of ridge parameter estimators performing well in different cases in developing the new ridge parameter estimator in a way of search method providing the smallest mean square error values of regression parameters. After that a simulation study is conducted to show that the proposed parameter is robust. In conclusion, it is found that this ridge parameter estimator is promising in any case. Moreover, a recent data set is used as an example for illustration to show that the proposed ridge parameter estimator is performing better.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRidge Regressionen_US
dc.subjectMulticollinearityen_US
dc.subjectRidge Parametersen_US
dc.subjectRobust Ridge Parameteren_US
dc.titleA new robust ridge parameter estimator based on search method for linear regression modelen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorGöktaş, Atila
dc.contributor.institutionauthorAkkuş, Özge
dc.identifier.doi10.1080/02664763.2020.1803814
dc.relation.journalJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster