Basit öğe kaydını göster

dc.contributor.authorGulsu, Mustafa
dc.contributor.authorOzturk, Yalcin
dc.contributor.authorAnapali, Ayse
dc.date.accessioned2020-11-20T16:19:53Z
dc.date.available2020-11-20T16:19:53Z
dc.date.issued2013
dc.identifier.issn0307-904X
dc.identifier.issn1872-8480
dc.identifier.urihttps://doi.org/10.1016/j.apm.2012.12.015
dc.identifier.urihttps://hdl.handle.net/20.500.12809/3818
dc.descriptionWOS: 000316769600026en_US
dc.description.abstractIn this study, we will obtain the approximate solutions of relaxation-oscillation equation by developing the Taylor matrix method. A relaxation oscillator is a kind of oscillator based on a behavior of physical system's return to equilibrium after being disturbed. The relaxation-oscillation equation is the primary equation of relaxation and oscillation processes. The relaxation-oscillation equation is a fractional differential equation with initial conditions. For this propose, generalized Taylor matrix method is introduced. This method is based on first taking the truncated fractional Taylor expansions of the functions in the relaxation-oscillation equation and then substituting their matrix forms into the equation. Hence, the result matrix equation can be solved and the unknown fractional Taylor coefficients can be found approximately. The reliability and efficiency of the proposed approach are demonstrated in the numerical examples with aid of symbolic algebra program, Maple. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.item-language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Relaxation-Oscillation Equationen_US
dc.subjectFractional Differential Equationen_US
dc.subjectGeneralized Taylor Seriesen_US
dc.subjectGeneralized Taylor Matrix Methoden_US
dc.subjectNumerical Approximationen_US
dc.titleNumerical approach for solving fractional relaxation-oscillation equationen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTemp[Gulsu, Mustafa; Ozturk, Yalcin; Anapali, Ayse] Mugla Univ, Dept Math, Fac Sci, Mugla, Turkeyen_US
dc.identifier.doi10.1016/j.apm.2012.12.015
dc.identifier.volume37en_US
dc.identifier.issue8en_US
dc.identifier.startpage5927en_US
dc.identifier.endpage5937en_US
dc.relation.journalApplied Mathematical Modellingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster