Basit öğe kaydını göster

dc.contributor.authorMert, Mehmet
dc.contributor.authorDemir, Serdar
dc.date.accessioned2020-11-20T16:21:03Z
dc.date.available2020-11-20T16:21:03Z
dc.date.issued2013
dc.identifier.issn2147-1762
dc.identifier.urihttps://hdl.handle.net/20.500.12809/3983
dc.descriptionMert, Mehmet/0000-0003-1406-4075en_US
dc.descriptionWOS: 000421144400007en_US
dc.description.abstractThe goal of credibility theory is to estimate the future claim of a given risk. The most accurate estimator is predictive mean. If the conditional mean of losses given the risk parameter and the prior distribution of the risk parameter are known, true predictive mean can be easily obtained. However, risk parameter cannot be observed practically and it can be difficult to estimate its distribution. In this study, the structure function is estimated by using kernel density estimation with several bandwidth selection methods. For comparing the efficiences of these methods, a simulation study performed by using the data from a mixture of a lognormal conditional over a lognormal prior. The results shows that the adaptive bandwidth selection method performs better evidently for low claim severities.en_US
dc.item-language.isoengen_US
dc.publisherGazi Univen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKernel Densityen_US
dc.subjectAdaptive Bandwidthen_US
dc.subjectLoss Distributionen_US
dc.subjectBayesian Estimationen_US
dc.titleCredibility Using Semiparametric Models With Adaptive Kernelen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTemp[Mert, Mehmet] Akdeniz Univ, Fac Econ & Adm Sci, Dept Econometr, TR-07058 Antalya, Turkey -- [Demir, Serdar] Mugla Sitki Kocman Univ, Fac Sci, Dept Stat, TR-48000 Mugla, Turkeyen_US
dc.identifier.volume26en_US
dc.identifier.issue1en_US
dc.identifier.startpage51en_US
dc.identifier.endpage56en_US
dc.relation.journalGazi University Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster