• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image

Tarih

2020

Yazar

Ali, Aqib
Qadri, Salman
Mashwani, Wali Khan
Kumam, Wiyada
Kumam, Poom
Naeem, Samreen
Sulaiman, Muhammad

Üst veri

Tüm öğe kaydını göster

Özet

The object of this study was to demonstrate the ability of machine learning (ML) methods for the segmentation and classification of diabetic retinopathy (DR). Two-dimensional (2D) retinal fundus (RF) images were used. The datasets of DR-that is, the mild, moderate, non-proliferative, proliferative, and normal human eye ones-were acquired from 500 patients at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan. Five hundred RF datasets (sized 256 x 256) for each DR stage and a total of 2500 (500 x 5) datasets of the five DR stages were acquired. This research introduces the novel clustering-based automated region growing framework. For texture analysis, four types of features-histogram (H), wavelet (W), co-occurrence matrix (COM) and run-length matrix (RLM)-were extracted, and various ML classifiers were employed, achieving 77.67%, 80%, 89.87%, and 96.33% classification accuracies, respectively. To improve classification accuracy, a fused hybrid-feature dataset was generated by applying the data fusion approach. From each image, 245 pieces of hybrid feature data (H, W, COM, and RLM) were observed, while 13 optimized features were selected after applying four different feature selection techniques, namely Fisher, correlation-based feature selection, mutual information, and probability of error plus average correlation. Five ML classifiers named sequential minimal optimization (SMO), logistic (Lg), multi-layer perceptron (MLP), logistic model tree (LMT), and simple logistic (SLg) were deployed on selected optimized features (using 10-fold cross-validation), and they showed considerably high classification accuracies of 98.53%, 99%, 99.66%, 99.73%, and 99.73%, respectively.

Kaynak

Entropy

Cilt

22

Sayı

5

Bağlantı

https://doi.org/10.3390/e22050567
https://hdl.handle.net/20.500.12809/488

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.