Basit öğe kaydını göster

dc.contributor.authorDinçer, Bekir Taner
dc.date.accessioned2020-11-20T16:37:41Z
dc.date.available2020-11-20T16:37:41Z
dc.date.issued2007
dc.identifier.issn1532-2882
dc.identifier.issn1532-2890
dc.identifier.urihttps://doi.org/10.1002/asi.20537
dc.identifier.urihttps://hdl.handle.net/20.500.12809/5107
dc.descriptionWOS: 000246379600009en_US
dc.description.abstractIn this article, the statistical principal components analysis (PCA) is proposed as a method for performance comparisons of different retrieval strategies. It is shown that the PCA method can reveal implicit performance relations among retrieval systems across information needs (i.e., queries, topics). For illustration, the TREC 12 robust track data have been reevaluated by the PCA method and have been shown to reveal easily the performance relations that are hard to see with traditional techniques. Therefore, PCA promises a uniform evaluation framework that can be used for large-scale evaluation of retrieval experiments. In addition to the mean average precision (MAP) measure, relative analytic distance (RAD) is proposed as a new performance summary measure based on the same notion introduced by PCA.en_US
dc.item-language.isoengen_US
dc.publisherWileyen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRetrieval experimentsen_US
dc.titleStatistical principal components analysis for retrieval experimentsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorDinçer, Bekir Taner
dc.identifier.doi10.1002/asi.20537
dc.identifier.volume58en_US
dc.identifier.issue4en_US
dc.identifier.startpage560en_US
dc.identifier.endpage574en_US
dc.relation.journalJournal of the American Society For Information Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster