• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques

Thumbnail

View/Open

Full Text - Article (1.502Mb)

Date

2020

Author

Sagbas, Ensar Arif
Korukoglu, Serdar
Ballı, Serkan
Article has an altmetric score of 13

See more details

Picked up by 1 news outlets
Posted by 1 X users
Referenced in 1 patents
121 readers on Mendeley

Metadata

Show full item record

Abstract

Stress is one of the biggest problems in modern society. It may not be possible for people to perceive if they are under high stress or not. It is important to detect stress early and unobtrusively. In this context, stress detection can be considered as a classification problem. In this study, it was investigated the effects of stress by using accelerometer and gyroscope sensor data of the writing behavior on a smartphone touchscreen panel. For this purpose, smartphone data including two states (stress and calm) were collected from 46 participants. The obtained sensor signals were divided into 5, 10 and 15 s interval windows to create three different data sets and 112 different features were defined from the raw data. To obtain more effective feature subsets, these features were ranked by using Gain Ratio feature selection algorithm. Afterwards, writing behaviors were classified by C4.5 Decision Trees, Bayesian Networks and k-Nearest Neighbor methods. As a result of the experiments, 74.26%, 67.86%, and 87.56% accuracy classification results were obtained respectively.

Source

Journal of Medical Systems

Volume

44

Issue

4

URI

https://doi.org/10.1007/s10916-020-1530-z
https://hdl.handle.net/20.500.12809/583

Collections

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.