Basit öğe kaydını göster

dc.contributor.authorRabbi, Fazli
dc.contributor.authorKhan, Salahuddin
dc.contributor.authorKhalil, Alamgir
dc.contributor.authorMashwani, Wali Khan
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorGöktaş, Pınar
dc.contributor.authorÜnvan, Yüksel Akay
dc.date.accessioned2020-11-20T14:39:51Z
dc.date.available2020-11-20T14:39:51Z
dc.date.issued2020
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttps://doi.org/10.1080/03610926.2020.1725829
dc.identifier.urihttps://hdl.handle.net/20.500.12809/593
dc.descriptionMashwani, Wali Khan/0000-0002-5081-741Xen_US
dc.descriptionWOS: 000513421700001en_US
dc.description.abstractModel selection is an important and challenging problem in statistics. The model selection is inevitable in a large number of applications including life sciences, social sciences, business, or economics. In this article, we propose a resampling-based information criterion called paired bootstrap criterion (PBC) for model selection. The proposed criterion is based on minimizing the conditional expected prediction loss for selecting the best subset of variables. We estimate the conditional expected prediction loss by using the out-of-bag (OOB) bootstrap approach. Other classical criteria for model selection such as AIC, BIC are also presented for comparison purpose. We demonstrate that the proposed paired bootstrap model selection criterion is effective in selecting accurate models via real and simulated data examples. The results confirm the satisfactory behavior of the proposed model selection criterion to select parsimonious models that fit the data well. We apply the proposed methodology to a real data example.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectResidual Bootstrapen_US
dc.subjectPaired Bootstrapen_US
dc.subjectModel Selectionen_US
dc.subjectPrediction Lossen_US
dc.subjectOut-Of-Bag Bootstrapen_US
dc.subjectOOB Erroren_US
dc.titleModel selection in linear regression using paired bootstrapen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Rektörlük, Strateji Geliştirme Daire Başkanlığıen_US
dc.contributor.institutionauthorGöktaş, Pınar
dc.identifier.doi10.1080/03610926.2020.1725829
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster