Basit öğe kaydını göster

dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T16:50:31Z
dc.date.available2020-11-20T16:50:31Z
dc.date.issued2020
dc.identifier.isbn9783030498283
dc.identifier.issn2194-5357
dc.identifier.urihttps://doi.org/10.1007/978-3-030-49829-0_32
dc.identifier.urihttps://hdl.handle.net/20.500.12809/6259
dc.description14th International Conference on Management Science and Engineering Management, ICMSEM 2020, 30 July 2020 through 2 August 2020, , 241479en_US
dc.description.abstractCensored data arise in almost all important statistical analyses. For example, in patient-based studies, biostatistics data often subject to right censoring due to the detection limits, or to incomplete data. In the context of regression analysis, improper handling of these problems may lead to biased parameter estimates. Recently, imputation techniques are popularly used to impute censoring observations and the data are then analyzed through techniques that can handle censoring. In this sense, we introduce a new imputation strategy called sliding window method based on predictive model imputation (SWPM). In the present study, to assess the success of the proposed imputation method, the classical predictive model (PM) is used as a benchmark method. Hence, we compared two imputation methods for evaluating the right-censored data. The focus here is to assess and analyze through simulation and real data studies the performances of our imputation techniques based on different censoring levels and sample sizes. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.item-language.isoengen_US
dc.publisherSpringeren_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCensored dataen_US
dc.subjectImputationen_US
dc.subjectPredictive model imputationen_US
dc.subjectSliding windowen_US
dc.titleImputation Method Based on Sliding Window for Right-Censored Dataen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1007/978-3-030-49829-0_32
dc.identifier.volume1190 AISCen_US
dc.identifier.startpage433en_US
dc.identifier.endpage446en_US
dc.relation.journalAdvances in Intelligent Systems and Computingen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster