Basit öğe kaydını göster

dc.contributor.authorAhmed, Syed Ejaz
dc.contributor.authorAydin, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T16:50:34Z
dc.date.available2020-11-20T16:50:34Z
dc.date.issued2020
dc.identifier.isbn9783030212476
dc.identifier.issn2194-5357
dc.identifier.urihttps://doi.org/10.1007/978-3-030-21248-3_8
dc.identifier.urihttps://hdl.handle.net/20.500.12809/6265
dc.description13th International Conference on Management Science and Engineering Management, ICMSEM 2019, 5 August 2019 through 8 August 2019, , 227599en_US
dc.description.abstractCensored data is a kind of data type where the exact value of a response variable is not completely known. Therefore, this case is a problem that should be solved in order to obtain an accurate and efficient data analysis. Recently, imputation methods have been used in order to overcome censored data problems, especially in medical research and microarray data sets. In this study, we compared two imputation methods, k-nearest neighbors (kNN) and a prediction model (PM), for the evaluation of right-censored data. In order to see the effects of the imputation methods on the nonparametric regression estimates, the imputed right-censored data modelled by the penalized splines for two methods. We also supported the study with a Monte Carlo simulation experiment and a real data study. © Springer Nature Switzerland AG 2020.en_US
dc.item-language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImputation methodsen_US
dc.subjectPenalized splineen_US
dc.subjectRight-censored dataen_US
dc.titleNonparametric regression estimates based on imputation techniques for right-censored dataen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydin, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1007/978-3-030-21248-3_8
dc.identifier.volume1001en_US
dc.identifier.startpage109en_US
dc.identifier.endpage120en_US
dc.relation.journalAdvances in Intelligent Systems and Computingen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster