Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T17:17:14Z
dc.date.available2020-11-20T17:17:14Z
dc.date.issued2019
dc.identifier.issn0361-0918
dc.identifier.urihttps://doi.org/10.1080/03610918.2019.1565586
dc.identifier.urihttps://hdl.handle.net/20.500.12809/6330
dc.description.abstractThis paper introduces a Padé-type approximation for an unknown regression function in a nonparametric regression model. This newly introduced approximation provides a linear model with multi-collinearities and errors in all its variables. To deal with these issues, we used the truncated total least squares (TTLS) method. The efficient implementation of a Padé-type method using TTLS depends on choosing a truncation level. To provide an optimum truncation level for this method, we update the conventional parameter selection methods, including the generalized cross validation (GCV), improved version of the Akaike information criterion (AICc), restricted maximum likelihood (REML), Bayesian information criterion (BIC), and Mallows’ Cp criterion. The primary aim of this study is to compare the performances of these level selection methods. A Monte Carlo simulation and a real data example are performed to illustrate the ideas in the paper. The results confirm that the GCV and AICc slightly outperform the other methods, especially when sample sizes are small and large, respectively. © 2019, © 2019 Taylor & Francis Group, LLC.en_US
dc.item-language.isoengen_US
dc.publisherTaylor and Francis Inc.en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRegression functionen_US
dc.subjectSelection methodsen_US
dc.subjectTotal least squaresen_US
dc.subjectTruncation levelen_US
dc.titleTruncation level selection in nonparametric regression using Padé approximationen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1080/03610918.2019.1565586
dc.relation.journalCommunications in Statistics: Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster