Basit öğe kaydını göster

dc.contributor.authorKapucu, Ceyhun
dc.contributor.authorÇubukçu, Mete
dc.date.accessioned2021-04-15T08:41:07Z
dc.date.available2021-04-15T08:41:07Z
dc.date.issued2021en_US
dc.identifier.citationKapucu, C., Cubukcu, M., 2021. A supervised ensemble learning method for fault diagnosis in photovoltaic strings. Energy 227, 120463.. doi:10.1016/j.energy.2021.120463en_US
dc.identifier.issn03605442
dc.identifier.urihttps://doi.org/10.1016/j.energy.2021.120463
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9162
dc.description.abstractThis study proposes a fault diagnosis method based on the use of a machine learning (ML) technique called ensemble learning (EL) for photovoltaic (PV) systems. EL methods aim to obtain better generalizability and prediction accuracy than a single ML algorithm by combining the predictions of multiple algorithms. In this context, first the most relevant features are selected by using grid-search with crossvalidation. Then each learning algorithm and the EL model that will combine them have been improved in terms of parameter optimization. Results show that, with the appropriate features and optimized parameters for each single learning algorithm and the EL model, the proposed method not only improves the classification performance but also has a strong generalization ability for PV system fault diagnosis.en_US
dc.item-language.isoengen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionof10.1016/j.energy.2021.120463en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhotovoltaic monitoringen_US
dc.subjectFault diagnosisen_US
dc.subjectEnsemble learningen_US
dc.subjectClassificationen_US
dc.subjectOptimizationen_US
dc.titleA supervised ensemble learning method for fault diagnosis in photovoltaic stringsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Rektörlük, Enformatik Bölümüen_US
dc.contributor.institutionauthorKapucu, Ceyhun
dc.identifier.volume227en_US
dc.relation.journalEnergyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster