• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fuzzy panel data analysis

Thumbnail

View/Open

Tam Metin / Full Text (5.954Mb)

Date

2021

Author

Yalçın, Muhammet Oğuzhan
Güler Dinçer, Nevin
Demir, Serdar

Metadata

Show full item record

Abstract

In statistical and econometric researches, three types of data are mostly used as cross-section, time series and panel data. Cross-section data are obtained by collecting the observations related to the same variables of many units at constant time. Time series data are data type consisted of observations measured at successive time points for single unit. Sometimes, the number of observations in cross-sectional or time series data is insufficient for carrying out the statistical or econometric analysis. In that cases, panel data obtained by combining cross-section and time series data are often used. Panel data analysis (PDA) has some advantages such as increasing the number of observations and freedom degree, decreasing of multicollinearity, and obtaining more efficient and consistent predictions results with more data information. However, PDA requires to satisfy some statistical assumptions such as "heteroscedasticity", "autocorrelation", "correlation between units", and "stationarity". It is too difficult to hold these assumptions in real-time applications. In this study, fuzzy panel data analysis (FPDA) is proposed in order to overcome these drawbacks of PDA. FPDA is based on predicting the parameters of panel data regression as triangular fuzzy number. In order to validate the performance of efficiency of FPDA, FPDA, and PDA are applied to panel data consisted of gross domestic production data from five country groups between the years of 2005-2013 and the prediction performances of them are compared by using three criteria such mean absolute percentage error, root mean square error, and variance accounted for. All analyses are performed in R 3.5.2. As a result of analysis, it is observed that FPDA is an efficient and practical method, especially in case required statistical assumptions are not satisfied

Source

Kuwait Journal of Science

Volume

48

Issue

3

URI

https://doi.org/10.48129/kjs.v48i3.8810
https://hdl.handle.net/20.500.12809/9391

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.