Basit öğe kaydını göster

dc.contributor.authorAkgüller, Ömer
dc.contributor.authorPaşalı Atmaca, Sibel
dc.date.accessioned2021-07-28T07:36:28Z
dc.date.available2021-07-28T07:36:28Z
dc.date.issued2020en_US
dc.identifier.citationAkgandüller, Ömer and Atmaca, Sibel Paşalı. "Discrete Normal Vector Field Approximation via Time Scale Calculus" Applied Mathematics and Nonlinear Sciences, vol.5, no.1, 2020, pp.349-360. https://doi.org/10.2478/amns.2020.1.00033en_US
dc.identifier.urihttps://doi.org/10.2478/amns.2020.1.00033
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9412
dc.description.abstractThe theory of time scales calculus have long been a subject to many researchers from different disciplines. Beside the unification and the extension aspects of the theory, it emerge as a powerful tool for mimetic discretization process. In this study, we present a framework to find normal vector fields of discrete point sets in R-3 by using symmetric differential on time scales. A surface parameterized by the tensor product of two time scales can be analogously expressed as the vertex set of non-regular rectangular grids. If the time scales are dense, then the discrete grid structure vanishes. If the time scales are isolated, then the further geometric analysis can be executed by using symmetric dynamic differential. Moreover, we present an algorithmic procedure to determine the symmetric dynamic differential structure on the neighborhood of points in surfaces. Our results indicate that the method we present has good approximation to unit normal vector fields of parameterized surfaces rather than the Delaunay triangulation for some pointsen_US
dc.item-language.isoengen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.isversionof10.2478/amns.2020.1.00033en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTime scale calculusen_US
dc.subjectSymmetric differentialen_US
dc.subjectDiscrete normalen_US
dc.subjectGeometric approximationen_US
dc.titleDiscrete Normal Vector Field Approximation via Time Scale Calculusen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.authorID0000-0002-7061-2534en_US
dc.contributor.institutionauthorAkgüller, Ömer
dc.contributor.institutionauthorPaşalı Atmaca, Sibel
dc.identifier.volume5en_US
dc.identifier.issue1en_US
dc.identifier.startpage349en_US
dc.identifier.endpage360en_US
dc.relation.journalApplied Mathematics and Nonlinear Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster