Basit öğe kaydını göster

dc.contributor.authorOrhan Ertaş, Nil
dc.contributor.authorAcar, Ummahan
dc.date.accessioned2021-08-06T07:06:09Z
dc.date.available2021-08-06T07:06:09Z
dc.date.issued2021en_US
dc.identifier.issn0976-5905
dc.identifier.urihttps://doi.org/10.26713/cma.v12i2.1490
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9450
dc.description.abstractFor two modules M and N, P-M(N) stands for the largest submodule of N relative to which M is projective. For any module M, P-M(N) defines a left exact preradical. It is given some properties of P-M(N). We express P-M(N) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring R right semi-Artinian if and only if for any right R -module M, P-M(M) <=(e) M.en_US
dc.item-language.isoengen_US
dc.publisherRGN PUBLen_US
dc.relation.isversionof10.26713/cma.v12i2.1490en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectProjective moduleen_US
dc.subjectP-poor moduleen_US
dc.subjectProjectivity domainen_US
dc.subjectSemi-Artininan ringen_US
dc.titleOn Rings whose Quasi Projective Modules Are Projective or Semisimpleen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.authorID0000-0001-5762-9684en_US
dc.contributor.institutionauthorAcar, Ummahan
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.identifier.startpage295en_US
dc.identifier.endpage302en_US
dc.relation.journalCommunications in Mathematics and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster