dc.contributor.author | Orhan Ertaş, Nil | |
dc.contributor.author | Acar, Ummahan | |
dc.date.accessioned | 2021-08-06T07:06:09Z | |
dc.date.available | 2021-08-06T07:06:09Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 0976-5905 | |
dc.identifier.uri | https://doi.org/10.26713/cma.v12i2.1490 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/9450 | |
dc.description.abstract | For two modules M and N, P-M(N) stands for the largest submodule of N relative to which M is projective. For any module M, P-M(N) defines a left exact preradical. It is given some properties of P-M(N). We express P-M(N) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring R right semi-Artinian if and only if for any right R -module M, P-M(M) <=(e) M. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | RGN PUBL | en_US |
dc.relation.isversionof | 10.26713/cma.v12i2.1490 | en_US |
dc.item-rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Projective module | en_US |
dc.subject | P-poor module | en_US |
dc.subject | Projectivity domain | en_US |
dc.subject | Semi-Artininan ring | en_US |
dc.title | On Rings whose Quasi Projective Modules Are Projective or Semisimple | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Fen Fakültesi, Matematik Bölümü | en_US |
dc.contributor.authorID | 0000-0001-5762-9684 | en_US |
dc.contributor.institutionauthor | Acar, Ummahan | |
dc.identifier.volume | 12 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 295 | en_US |
dc.identifier.endpage | 302 | en_US |
dc.relation.journal | Communications in Mathematics and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |