Basit öğe kaydını göster

dc.contributor.authorAyvaz, Uğur
dc.contributor.authorGürüler, Hüseyin
dc.contributor.authorKhan, Faheem
dc.contributor.authorAhmed, Naveed
dc.contributor.authorWhangbo, Taegkeun
dc.date.accessioned2022-02-10T06:51:19Z
dc.date.available2022-02-10T06:51:19Z
dc.date.issued2022en_US
dc.identifier.citationAyvaz, U., Gürüler, H., Khan, F., Ahmed, N., Whangbo, T. et al. (2022). Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning. CMC-Computers, Materials & Continua, 71(3), 5511–5521.en_US
dc.identifier.urihttps://doi.org/10.32604/cmc.2022.023278
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9795
dc.description.abstractAutomatic speaker recognition (ASR) systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals. One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients (MFCCs). Recent researches show that MFCCs are successful in processing the voice signal with high accuracies. MFCCs represents a sequence of voice signal-specific features. This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings. Since the human perception of sound is not linear, after the filterbank step in the MFCC method, we converted the obtained log filterbanks into decibel (dB) features-based spectrograms without applying the Discrete Cosine Transform (DCT). A new dataset was created with converted spectrogram into a 2-D array. Several learning algorithms were implemented with a 10-fold cross-validation method to detect the speaker. The highest accuracy of 90.2% was achieved using Multi-layer Perceptron (MLP) with tanh activation function. The most important output of this study is the inclusion of human voice as a new feature seten_US
dc.item-language.isoengen_US
dc.publisherTech Science Pressen_US
dc.relation.isversionof10.32604/cmc.2022.023278en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAutomatic speaker recognitionen_US
dc.subjectHuman voice recognitionen_US
dc.subjectSpatial pattern recognitionen_US
dc.subjectMFCCsen_US
dc.subjectSpectrogramen_US
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.titleAutomatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learningen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-1855-1882en_US
dc.contributor.institutionauthorGürüler, Hüseyin
dc.identifier.volume71en_US
dc.identifier.issue2en_US
dc.identifier.startpage5511en_US
dc.identifier.endpage5521en_US
dc.relation.journalComputers, Materials and Continuaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster