• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Consistency and Asymptotic Normality of Estimator for Parameters in Multiresponse Multipredictor Semiparametric Regression Model

Thumbnail

View/Open

Tam metin / Full text (1.499Mb)

Date

2022

Author

Chamidah, Nur
Lestari, Budi
Budiantara, I. Nyoman
Saifudin, Toha
Rulaningtyas, Riries
Aryati, Aryati
Wardani, Puspa
Aydın, Dursun

Metadata

Show full item record

Citation

Chamidah, N.; Lestari, B.; Budiantara, I.N.; Saifudin, T.; Rulaningtyas, R.; Aryati, A.;Wardani, P.; Aydin, D. Consistency and Asymptotic Normality of Estimator for Parameters in Multiresponse Multipredictor Semiparametric Regression Model. Symmetry 2022, 14, 336. https://doi.org/10.3390/sym14020336

Abstract

A multiresponse multipredictor semiparametric regression (MMSR) model is a combination of parametric and nonparametric regressions models with more than one predictor and response variables where there is correlation between responses. Due to this correlation we need to construct a symmetric weight matrix. This is one of the things that distinguishes it from the classical method, which uses a parametric regression approach. In this study, we theoretically developed a method of determining a confidence interval for parameters in a MMSR model based on a truncated spline, and investigating asymptotic properties of estimator for parameters in a MMSR model, especially consistency and asymptotic normality. The weighted least squares method was used to estimate the MMSR model. Next, we applied a pivotal quantity method, a Cramer-Wold theorem, and a Slutsky theorem to determine the confidence interval, investigate consistency, and asymptotic normality properties of estimator for parameters in a MMSR model. The obtained results were that the estimated regression function is linear to observation. We also obtained a 1001-alpha% confidence interval for parameters in the MMSR model, and the estimator for parameters in MMSR model was consistent and asymptotically normally distributed. In the future, these obtained results can be used as a theoretical basis in designing a standard toddlers growth chart to assess nutritional status.

Source

SYMMETRY-BASEL

Volume

14

Issue

2

URI

https://doi.org/10.3390/sym14020336
https://hdl.handle.net/20.500.12809/9862

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.