dc.contributor.author | Akbar, Rahmad | |
dc.contributor.author | Bashour , Habib | |
dc.contributor.author | Rawat, Puneet | |
dc.contributor.author | Robert, Philippe A. | |
dc.contributor.author | Zengin, Talip | |
dc.date.accessioned | 2022-03-29T06:23:45Z | |
dc.date.available | 2022-03-29T06:23:45Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Rahmad Akbar, Habib Bashour, Puneet Rawat, Philippe A. Robert, Eva Smorodina, Tudor-Stefan Cotet, Karine Flem-Karlsen, Robert Frank, Brij Bhushan Mehta, Mai Ha Vu, Talip Zengin, Jose Gutierrez-Marcos, Fridtjof Lund-Johansen, Jan Terje Andersen & Victor Greiff (2022) Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies, mAbs, 14:1, DOI: 10.1080/19420862.2021.2008790 | en_US |
dc.identifier.issn | 1942-0862 | |
dc.identifier.issn | 1942-0870 | |
dc.identifier.uri | https://doi.org/10.1080/19420862.2021.2008790 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/9885 | |
dc.description.abstract | Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | TAYLOR & FRANCIS INC | en_US |
dc.relation.isversionof | 10.1080/19420862.2021.2008790 | en_US |
dc.item-rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Antibody | en_US |
dc.subject | Antigen | en_US |
dc.subject | Developability | en_US |
dc.subject | Drug design | en_US |
dc.title | Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Fen Fakültesi, Moleküler Biyoloji ve Genetik Bölümü | en_US |
dc.contributor.authorID | 0000-0003-4764-4615 | en_US |
dc.contributor.institutionauthor | Zengin, Talip | |
dc.identifier.volume | 14 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.journal | mAbs | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |