Basit öğe kaydını göster

dc.contributor.authorAkbar, Rahmad
dc.contributor.authorBashour , Habib
dc.contributor.authorRawat, Puneet
dc.contributor.authorRobert, Philippe A.
dc.contributor.authorZengin, Talip
dc.date.accessioned2022-03-29T06:23:45Z
dc.date.available2022-03-29T06:23:45Z
dc.date.issued2022en_US
dc.identifier.citationRahmad Akbar, Habib Bashour, Puneet Rawat, Philippe A. Robert, Eva Smorodina, Tudor-Stefan Cotet, Karine Flem-Karlsen, Robert Frank, Brij Bhushan Mehta, Mai Ha Vu, Talip Zengin, Jose Gutierrez-Marcos, Fridtjof Lund-Johansen, Jan Terje Andersen & Victor Greiff (2022) Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies, mAbs, 14:1, DOI: 10.1080/19420862.2021.2008790en_US
dc.identifier.issn1942-0862
dc.identifier.issn1942-0870
dc.identifier.urihttps://doi.org/10.1080/19420862.2021.2008790
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9885
dc.description.abstractAlthough the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.en_US
dc.item-language.isoengen_US
dc.publisherTAYLOR & FRANCIS INCen_US
dc.relation.isversionof10.1080/19420862.2021.2008790en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAntibodyen_US
dc.subjectAntigenen_US
dc.subjectDevelopabilityen_US
dc.subjectDrug designen_US
dc.titleProgress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodiesen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Moleküler Biyoloji ve Genetik Bölümüen_US
dc.contributor.authorID0000-0003-4764-4615en_US
dc.contributor.institutionauthorZengin, Talip
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.relation.journalmAbsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster