• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of process variables on the properties of nanoporous silica aerogels: an approach to prepare silica aerogels from biosilica

Thumbnail

View/Open

Tam metin / Full text (1.217Mb)

Date

2017

Author

Temel, Tülay Merve
İkizler, Burcu Karakuzu
Terzioğlu, Pınar
Yücel, Sevil
Elalmış, Yeliz Başaran

Metadata

Show full item record

Abstract

Silica aerogel, a nanoporous material, was produced by using rice husk ash via sol-gel method. The aim of the study is to examine effects of the acid type (acetic, hydrochloric, nitric, oxalic and sulfuric acid), dryer type (air, freeze, oven and vacuum) and the addition of tetraethyl orthosilicate on the structural and physical properties of aerogels produced from rice husk ash. In addition, this is the first study investigating the effect of vacuum oven drying on the structure of rice husk based silica aerogel. Specific surface area and pore size of obtained silica aerogels have been analyzed by the N-2 adsorption and desorption measurements at 77 K via Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) methods, respectively. Surface functional groups were determined with fourier transform infrared spectroscopy (FTIR). Surface morphology was examined with scanning electron microscopy (SEM). Moreover, density was calculated by tapping method. The results showed that all of the variables had remarkable effects on the final properties of the silica aerogel. The BET specific surface area of the silica aerogels increased with the addition of tetraethyl orthosilicate, while the tapping density decreased. The BET specific surface area and pore size of silica aerogels varied between 140.7-322.5 m(2) g(-1), and 5.38-12.05 nm, respectively. Silica aerogel which was obtained by using oxalic acid, tetraethyl orthosilicate addition and air dryer had the highest BET specific surface area (322.5 m(2) g(-1)).

Source

Journal of Sol-Gel Science and Technology

Volume

84

Issue

1

URI

https://doi.org/10.1007/s10971-017-4469-x
https://hdl.handle.net/20.500.12809/1820

Collections

  • Kimya Bölümü Koleksiyonu [352]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.