• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fethiye İşletme Fakültesi
  • Yönetim Bilişim Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fethiye İşletme Fakültesi
  • Yönetim Bilişim Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

What makes survival of heart failure patients? Prediction by the iterative learning approach and detailed factor analysis with the SHAP algorithm

Date

2023

Author

İlkuçar, Muammer
Çifci A.
Kirbaş I.

Metadata

Show full item record

Abstract

Cardiovascular disease is the leading cause of global death and disability. There are many types of cardiovascular diseases. The diagnosis of heart failure, one of the cardiovascular disease types, is a challenging task and plays a significant role in guiding the treatment of patients. However, machine learning approaches can be helpful for assisting medical institutions and practitioners in predicting heart failure in the early phase. This study is the first application that analyzes the dataset containing clinical records of 299 patients with heart failure using a feedforward backpropagation neural network (NN). The aim of this study is to predict the survival of heart failure patients based on the clinical data and to identify the strongest factors influencing heart failure disease development. We adopted the Shapley additive explanations (SHAP) values, which have been used to interpret model findings. From the study, it is observed that the best and highest accuracy of 91.11% is obtained compared to previous studies and it is found that feedforward backpropagation NN performed better than the previous approaches. Also, this study revealed that time, ejection fraction (EF), serum creatinine, creatinine phosphokinase (CPK), and age are the strongest risk factors for mortality among patients suffering from heart failure.

Source

Explainable Artificial Intelligence for Biomedical Applications

URI

https://hdl.handle.net/20.500.12809/10836

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • Yönetim Bilişim Bölümü Koleksiyonu [5]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.