One-pot synthesis of a new 2-substituted 1,2,3-triazole 1-oxide derivative from dipyridyl ketone and isonitrosoacetophenone hydrazone: Nickel(II) complex, DNA binding and cleavage properties
Abstract
An efficient and simple one-pot synthesis of a new 1,2,3-triazole-1-oxide via reaction between isonitrosoacetophenone hydrazone and dipyridyl ketone in the EtOH/AcOH at room temperature has been developed smoothly in high yield. The reaction proceeds via metal salt free, in-situ formation of asymmetric azine followed by cyclization to provide 1,2,3-triazole 1-oxide compound. It has been structurally characterized. The 1:1 ratio reaction of the 1,2,3-triazole 1-oxide ligand with nickel(II) chloride gives the mononuclear complex [Ni(L)(DMF)Cl-2], hexa-coordinated within an octahedral geometry. Characterization of the 1,2,3-triazole compound and its Ni(II) complex with FTIR, H-1 and C-13 NMR, UV-vis and elemental analysis also confirms the proposed structures of the compounds. The interactions of the compounds with Calf thymus DNA (CT-DNA) have been investigated by UV-visible spectra and viscosity measurements. The results suggested that both ligand and Ni(II) complex bind to DNA in electrostatic interaction and/or groove binding, also with a slight partial intercalation in the case of ligand. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). Both 1,2,3-triazole 1-oxide ligand and its nickel(II) complex show nuclease activity in the presence of hydrogen peroxide. DNA binding and cleavage affinities of the 1,2,3-triazole 1-oxide ligand is stronger than that of the Ni(II) complex. (C) 2017 Elsevier Inc. All rights reserved.