Basit öğe kaydını göster

dc.contributor.authorXue, Chenming
dc.contributor.authorBirel, Özgül
dc.contributor.authorGao, Min
dc.contributor.authorZhang, Sheng
dc.contributor.authorDai, Liming
dc.contributor.authorUrbas, Augustine
dc.contributor.authorLi, Quan
dc.date.accessioned2020-11-20T16:22:13Z
dc.date.available2020-11-20T16:22:13Z
dc.date.issued2012
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttps://doi.org/10.1021/jp301816p
dc.identifier.urihttps://hdl.handle.net/20.500.12809/4123
dc.descriptionWOS: 000303848600068en_US
dc.description.abstractHere we report the synthesis and characterization of organosoluble perylene monolayer protected gold nanorods. From H-1 NMR, FT-IR, and differential scanning calorimetry experiments, the successful thiol exchange and stacking of perylene molecules on gold nanorods were confirmed. The resulting gold nanorods encapsulated with perylene thiol molecules via strong covalent Au-S linkages showed unique optical and electronic properties compared to the initial free perylene molecules and gold nanorods, indicating there were strong interactions between perylene chromophores and gold nanorods. When attached on gold nanorods, the perylene chromophores did not exhibit any typical UV-vis absorption or fluorescence emission signal, originating from the charge transfer from gold nanorods to perylene chromophores. However, the missing signals reappeared upon the addition of iodine, which detached the perylene molecules from gold nanorods. For the hybrid gold nanorods, particular electronic properties were also investigated by cyclic voltammetry and electron diffraction. Furthermore, with strong pi-pi intermolecular interactions, the perylene thiol monolayer protected gold nanorods were able to aggregate. When drying from highly diluted solution, gold nanorods formed well-organized side-by-side self-assembly arrays.en_US
dc.description.sponsorshipAir Force Office of Scientific Research (AFOSR)United States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-09-1-0254]; AFOSR-MURIUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR)MURI [FA9550-12-1-0037]; TUBITAK from TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [2219]; Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materialsen_US
dc.description.sponsorshipThis work was supported by the Air Force Office of Scientific Research (AFOSR FA9550-09-1-0254). Support from AFOSR-MURI (FA9550-12-1-0037) and TUBITAK (2219) from Turkey is also acknowledged. The TEM data were obtained at the (cryo) TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials.en_US
dc.item-language.isoengen_US
dc.publisherAmer Chemical Socen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSelf-Assembliesen_US
dc.titlePerylene Monolayer Protected Gold Nanorods: Unique Optical, Electronic Properties and Self-Assembliesen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Kimya Bölümüen_US
dc.contributor.institutionauthorBirel, Özgül
dc.identifier.doi10.1021/jp301816p
dc.identifier.volume116en_US
dc.identifier.issue18en_US
dc.identifier.startpage10396en_US
dc.identifier.endpage10404en_US
dc.relation.journalJournal of Physical Chemistry Cen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster