Basit öğe kaydını göster

dc.contributor.authorEminli, Mubariz
dc.contributor.authorGuler, Nevin
dc.date.accessioned2020-11-20T16:34:29Z
dc.date.available2020-11-20T16:34:29Z
dc.date.issued2010
dc.identifier.issn1064-1246
dc.identifier.issn1875-8967
dc.identifier.urihttps://doi.org/10.3233/IFS-2010-0461
dc.identifier.urihttps://hdl.handle.net/20.500.12809/4658
dc.description1st International Symposium on Fuzzy Systems - OCT 01-02, 2009 - Ankara, TURKEYen_US
dc.descriptionWOS: 000282187700002en_US
dc.description.abstractIn this study, we propose fuzzy modeling algorithm to improve Takagi-Sugeno fuzzy model. This algorithm initially finds desirable number of rules at once, in advance, and then identifies the premise and consequent parameters separately by fixing number determined. The proposed algorithm consists of three stages: determination of the optimal number of fuzzy rules, coarse tuning of parameters and fine tuning of these parameters. To find the optimal number of rules, the new cluster validity algorithm that is based on the validity criterion V-sv adapted to the usage of FCRM-like clustering, is proposed. In coarse tuning, by using the mentioned clustering algorithm for input-output data and the projection scheme, the consequent and premise parameters are coarsely defined. In fine tuning, the gradient descent (GD) method is used to precisely adjust parameters of fuzzy model but unlike other similar modeling algorithms, the premise parameters are adjusted with respect to multidimensional membership function in premise part of rule. Finally, two examples are given to demonstrate the validity of suggested modeling algorithm and show its excellent predictive performance.en_US
dc.item-language.isoengen_US
dc.publisherIos Pressen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTakagi-Sugeno Fuzzy Modelen_US
dc.subjectMultidimensional Fuzzy Setsen_US
dc.subjectCourse Tuningen_US
dc.subjectFine Tuningen_US
dc.subjectFuzzy C-Regression Modelen_US
dc.subjectGradient Descent Methoden_US
dc.titleAn improved Takagi-Sugeno fuzzy model with multidimensional fuzzy setsen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmenten_US
dc.contributor.departmentTemp[Eminli, Mubariz] Hal Univ, Fac Engn, Dept Comp Engn, Istanbul, Turkey -- [Guler, Nevin] Mugla Univ, Fac Arts & Sci, Dept Stat, Mugla, Turkeyen_US
dc.identifier.doi10.3233/IFS-2010-0461
dc.identifier.volume21en_US
dc.identifier.issue5en_US
dc.identifier.startpage277en_US
dc.identifier.endpage287en_US
dc.relation.journalJournal of Intelligent & Fuzzy Systemsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster