Reduced Graphene Oxide-MWCNT Organogel Foam for Lithium-Sulfur Battery Cathode
Özet
The fabrication of self-standing porous carbon foam nanostructures for trapping sulfur in Lithium-Sulfur (Li-S) batteries was aimed in this work. Nitrogen doped reduced graphene oxide/acid treated MWCNT based cathode material was prepared and characterized by different techniques. The GO/aMWCNT organofoam nanostructures were first polymerized in-situ with aniline and pyrrole and then carbonized at 800°C under argon atmosphere. The purpose of the carbonization was to improve the conductivity of the carbon matrix and dope it with nitrogen using PANI and PPy as a nitrogen source. N-doped rGO/aMWCNT foams exhibited the three dimensional porous network morphology and high conductivity (3.06 S.cm-1). The sulfur was infiltrated to the foams by melt diffusion method and the highest sulfur content of the rGO/aMWCNT-S composite was found as 61.3 wt. %. © The Electrochemical Society.